Damped elastic recoil of the titin spring in myofibrils of human myocardium.

نویسندگان

  • Christiane A Opitz
  • Michael Kulke
  • Mark C Leake
  • Ciprian Neagoe
  • Horst Hinssen
  • Roger J Hajjar
  • Wolfgang A Linke
چکیده

The giant protein titin functions as a molecular spring in muscle and is responsible for most of the passive tension of myocardium. Because the titin spring is extended during diastolic stretch, it will recoil elastically during systole and potentially may influence the overall shortening behavior of cardiac muscle. Here, titin elastic recoil was quantified in single human heart myofibrils by using a high-speed charge-coupled device-line camera and a nanonewtonrange force sensor. Application of a slack-test protocol revealed that the passive shortening velocity (Vp) of nonactivated cardiomyofibrils depends on: (i) initial sarcomere length, (ii) release-step amplitude, and (iii) temperature. Selective digestion of titin, with low doses of trypsin, decelerated myofibrillar passive recoil and eventually stopped it. Selective extraction of actin filaments with a Ca2+-independent gelsolin fragment greatly reduced the dependency of Vp on release-step size and temperature. These results are explained by the presence of viscous forces opposing myofibrillar passive recoil that are caused mainly by weak actin-titin interactions. Thus, Vp is determined by two distinct factors: titin elastic recoil and internal viscous drag forces. The recoil could be modeled as that of a damped entropic spring consisting of independent worm-like chains. The functional importance of myofibrillar elastic recoil was addressed by comparing instantaneous Vp to unloaded shortening velocity, which was measured in demembranated, fully Ca2+-activated, human cardiac fibers. Titin-driven passive recoil was much faster than active unloaded shortening velocity in early phases of isotonic contraction. Damped myofibrillar elastic recoil could help accelerate active contraction speed of human myocardium during early systolic shortening.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Series of exon-skipping events in the elastic spring region of titin as the structural basis for myofibrillar elastic diversity.

Titins are megadalton-sized filamentous polypeptides of vertebrate striated muscle. The I-band region of titin underlies the myofibrillar passive tension response to stretch. Here, we show how titins with highly diverse I-band structures and elastic properties are expressed from a single gene. The differentially expressed tandem-Ig, PEVK, and N2B spring elements of titin are coded by 158 exons,...

متن کامل

I-Band Titin in Cardiac Muscle Is a Three-Element Molecular Spring and Is Critical for Maintaining Thin Filament Structure

In cardiac muscle, the giant protein titin exists in different length isoforms expressed in the molecule's I-band region. Both isoforms, termed N2-A and N2-B, comprise stretches of Ig-like modules separated by the PEVK domain. Central I-band titin also contains isoform-specific Ig-motifs and nonmodular sequences, notably a longer insertion in N2-B. We investigated the elastic behavior of the I-...

متن کامل

Changes in titin isoform expression in pacing-induced cardiac failure give rise to increased passive muscle stiffness.

BACKGROUND Titin contains a molecular spring segment that underlies passive myocardial stiffness. Myocardium coexpresses titin isoforms with molecular spring length variants and, consequently, distinct stiffness characteristics: the stiff N2B isoform (short spring) and more compliant N2BA isoform (long spring). We tested whether changes in titin isoform expression occur in the diastolic dysfunc...

متن کامل

Modulation of titin-based stiffness by disulfide bonding in the cardiac titin N2-B unique sequence.

The giant protein titin is responsible for the elasticity of nonactivated muscle sarcomeres. Titin-based passive stiffness in myocardium is modulated by titin-isoform switching and protein-kinase (PK)A- or PKG-dependent titin phosphorylation. Additional modulatory effects on titin stiffness may arise from disulfide bonding under oxidant stress, as many immunoglobulin-like (Ig-)domains in titin'...

متن کامل

Stretching molecular springs: elasticity of titin filaments in vertebrate striated muscle.

Titin, the giant protein of striated muscle, provides a continuous link between the Z-disk and the M-line of a sarcomere. The elastic I-band section of titin comprises two main structural elements, stretches of immunoglobulin-like domains and a unique sequence, the PEVK segment. Both elements contribute to the extensibility and passive force development of nonactivated muscle. Extensibility of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 22  شماره 

صفحات  -

تاریخ انتشار 2003